管理员登录 / English
赵亮
基本介绍
姓名:赵亮
职称:副教授
所在部门(教研室):几何教研室
电子邮件:liangzhao@bnu.edu.cn
个人简介

博士,副教授,硕士生导师。主持国家自然科学基金2项,参加了一系列国家自然科学基金,包括其中包括教育部创新团队、教育部人文社科重点研究基地重大项目等。研究领域包括几何分析、偏微分方程、金融数据分析、人工智能等。现担任中国指挥与控制学会青年工作委员会委员、央财金融科技书系执行主编、人教版《普通高中教科书 数学(B版)》分册主编。

学术访问经历

2004.9-2005.9 德国Max-Planck研究所(MIS, MPG, Leipzig)

2010.2-2010.3 美国Rutgers大学

2016.2-2016.8德国Max-Planck研究所(MIS, MPG, Leipzig)

2017.6-2017.8德国Max-Planck研究所(MIS, MPG, Leipzig)

研究兴趣

几何分析、偏微分方程、金融数据分析、人工智能中的数学问题

承担课题

1. Energy identities for Dirac-harmonic maps, Calc. Var. P.D.E., 28, 121-138, 2007.

2. (with Yunyan Yang) A Class of Admas-Fontana type inequalities and related functionals on manifolds, NoDEA, 17, 119-135, 2010.

3. (with Xiaohuan Mo) Regularity of weakly harmonic maps from a Finsler surface into an n-sphere, Pac. J. Math, 253, 145-155, 2011.

4. Exponential problem on a compact Riemannian manifold without boundary, Nonlinear Anal.-Theor., 75, 433-443, 2012.

5. A multiplicity result for a singular and nonhomogeneous elliptic problem in $\mathbb{R}^n$, J. Part. Diff. Eq., 25, 90-102, 2012.

6. (with Yuanyuan Chang) Min-max level estimate for a singular quasilinear polyharmonic equation in $\mathbb{R}^{2m}$, J. Differ. Equations, 254, 2434-2464, 2013.

7. (with Ning Zhang) Existence of solutions for a higher order Kirchhoff type problem with exponential critical growth, Nonlinear Anal.-Theor., 132, 214-226, 2016.

8. (with Xiaoli Han, Juergen Jost, Lei Liu) Bubbling analysis for approximate Lorentzian harmonic maps from Riemann surfaces, Calc. Var. P.D.E., 56, 2017.

9. (with Xiaoli Han, Miaomiao Zhu) Energy identity for harmonic maps into standard stationary Lorentzian manifolds, J. Geom. Phys., 114, 621-630, 2017.

10. (with Xiaoli Han, Jiayu Li) A mean curvature flow along a Kahler-Ricci flow, International Journal of Mathematics, 29, 2018.

11. (with Ning Zhang) Convergence of ground state solutions for nonlinear Schrodinger equations on graphs, Science China Mathematics, 2018 (online first).

12. (with Xiaoli Han, Lei Liu) A global weak solution for the Lorentzian harmonic map flow, Science China Mathematics, 2018 (online first).

13. (with张宁) 稳健协方差方法及其在上市公司信息披露质量评价中的应用,金融发展研究,2015

14. (with张宁 袁晓倩) 基于长寿风险理论的退休年龄和投资收益率组合分析,金融发展研究,2015

15. (with Ning Zhang) Analysis on cohort effects in view of differential geometry and its applications, http://arxiv.org/abs/1703.00398, submitted.

16. (with Xiaoli Han, Juergen Jost, Lei Liu) Global existence of the harmonic map heat flow into Lorentzian manifolds, MIS-Preprint: 70/2016, submitted

学生培养

已毕业硕士研究生1名(获校级学术优秀奖学金)。